Stable Homopolyatomic Anions: The Crystal Structures of Salts of the Anions Pentaplumbide(2-) and Enneastannide(4-)

By John D. Corbett* and Paul A. Edwards
(Ames Laboratory, USERDA, and Department of Chemistry, Iowa State University, Ames, Iowa 50011)

Summary The unique trigonal bipyramidal $\mathrm{Pb}_{5}{ }^{2-}$ and unicapped antiprismatic $\mathrm{Sn}_{9}{ }^{4-}$ anions have been discovered by X-ray structural studies on their salts with $\mathrm{Na}^{+}(2,2,2$-crypt $)$.

Although polyatomic anions of the heavy post-transition metals have long been known, primarily as solutions of alkali metal alloy phases in liquid ammonia, ${ }^{1}$ it was only very recently ${ }^{2}$ that we discovered a general route to the isolation of stable derivatives of these anions, namely through the use of $2,2,2-c_{r y p t}{ }^{3} \dagger$ to complex the alkali metal ion and prevent reversion to the alloy phase. We now report the first extensions of that work, the structures of the two red derivatives $\left[\mathrm{Na}(\text { crypt })^{+}\right]_{2} \mathrm{~Pb}_{5}{ }^{2-}$ and $\left[\mathrm{Na}(\text { crypt })^{+}\right]_{4}{ }^{-}$ $\mathrm{Sn}_{9}{ }^{4-}$.
X-ray data were obtained from single crystals of the two derivatives with a four-circle automatic diffractometer using Mo- K_{α} radiation. The lead derivative exhibits hexagonal unit cell parameters, $a=11.615 \AA, c=22 \cdot 108 \AA$, and $Z=2$, with the extinction condition $h \bar{h} 0 l$ for $l=$ $2 n+1$. The tin derivative occurs in a triclinic crystal system, $a=16.675 \AA, b=21 \cdot 243 \AA, c=15 \cdot 397 \AA, \alpha=$ $107.98^{\circ}, \beta=103.42^{\circ}, \gamma=81.75^{\circ}$, and $Z=2$. Heavy
atom positions for both structures were inferred from threedimensional Patterson functions, and light atom positions

Figure. The structures of the ions $\mathrm{Pb}_{5}{ }^{2-}$ (a) and $\mathrm{Sn}_{9}{ }^{4-}$ (b).
were successively deduced from least-squares refinement and electron density syntheses. In both structures metal atoms were refined with anisotropic temperature factors and all other temperature factors were varied isotropically. The data set for the lead compound exhibited trigonal rather than hexagonal symmetry and the structure was
refined in the space group $P \overline{3} c I$ by full-matrix least-squares techniques to a conventional discrepancy factor R of 0.118 . The ll7 independent (nonhydrogen) atoms in the tin structure were likewise refined in the space group $P \overline{\mathrm{l}}$ to $R=0 \cdot 121$.

The most interesting features of the structures are the anions $\mathrm{Sn}_{9}{ }^{4-}$ and $\mathrm{Pb}_{5}{ }^{2-}$ illustrated in the Figure. The $\mathrm{Pb}_{5}{ }^{2-}$ ion has $D_{3 h}$ symmetry according to the space group and exhibits axial-equatorial and equatorial-equatorial bond distances of 3.00 and $3.23 \AA$, respectively, quite reasonable relative to those found in $\mathrm{Bi}_{9}{ }^{5+}$. The formation of this ion itself is somewhat of a surprise because the green $\mathrm{Pb}_{9}{ }^{4-}$ is so well known in liquid ammonia media ${ }^{1}$ and this ion would be isoelectronic with both $\mathrm{Bi}_{9}{ }^{5+}$ and $\mathrm{Sn}_{9}{ }^{4-}$. But on the other hand the ion found is appropriate for a species isoelectronic with $\mathrm{Bi}_{5}{ }^{3+}$, a well established ion for which the MO calculations are seemingly unambiguous in predicting $D_{3 h}$ configuration ${ }^{5}$ but where apparent twinning problems have so far frustrated crystal structure analyses.

Although the anion $\mathrm{Sn}_{9}{ }^{4-}$ is isoelectronic with $\mathrm{Bi}_{9}{ }^{5+}$, a well behaved tricapped trigonal prism $\left(D_{3 h}\right),{ }^{4}$ the ion found here evidently provides the first clear example of the
alternative, an antiprism capped on one square face ($C_{4 v}$). The bottom atoms shown (2, 8, 5, 7 in the Figure) are nearly co-planar with a dihedral angle of $177 \cdot 4^{\circ}$ between planes $2-7-8$ and $5-7-8$. Nearest neighbour distances throughout the figure, including the capping atom 9 , range from 2.93 to $3.02 \AA$ except that distances between atoms $1,3,6$, and 4 describing the top square face of the parent antiprism before capping are elongated to between $3 \cdot 20$ and $3 \cdot 3 \mathrm{l} \AA$. There appears to be no other example which is at all close to this particular configuration, even for co-ordination polyhedra about metal atoms. The stability of the nine atom clusters with 22 electrons in $C_{4 v}$ as well as $D_{3 h}$ symmetry can be inferred by inspection of the MO's for the probable effect of capping the antiprismatic $\mathrm{Bi}_{8}{ }^{2+}$ with $\mathrm{Bi}^{3+} ;{ }^{5,6}$ the same is implied by calculations on the related ${ }^{5}$ $\mathrm{B}_{9} \mathrm{H}_{9}$ polyhedra. ${ }^{7}$

We thank Dr. D. J. Merryman and F. J. Armatis for some of the preliminary syntheses and Professor R. A. Jacobson for assistance with the structure determinations.
(Received, 6th October 1975; Com. 1139.)

[^0]
[^0]: ${ }^{1}$ E. Zintl, J. Goubeau, and W. Dullenkopf, Z. Phys. Chem., 1931, A154, 1.
 ${ }^{2}$ J. D. Corbett, D. G. Adolphson, D. J. Merryman, P. A. Edwards, and F. J. Armatis, J. Amer. Chem. Soc., 1975, 77, 6267.
 ${ }^{3}$ B. Dietrich, J. M. Lehn, and J. P. Sauvage, Tetrahedron Letters, 1969, 34, 2885.
 ${ }^{4}$ R. M. Friedman and J. D. Corbett, Inorg. Chem., 1973, 12, 1134.
 ${ }^{5}$ J. D. Corbett, Inorg. Chem., 1968, 7, 198.
 6 J. D. Corbett and R. E. Rundle, Inorg. Chem., 1964, 3, 1408.
 ${ }^{2}$ L. J. Guggenberger, Inorg. Chem., 1968, 7, 2260.

